Thermal method measures microscopic particles
A new heat-based technique for counting and measuring the size of microscopic particles has been developed in the US.

The technique, developed at North Carolina State University, the University of North Carolina at Chapel Hill and Marquette University, is claimed to be less expensive than light-based techniques and can be used on a wider array of materials than electricity-based methods.
’We launched this study purely out of curiosity, but it’s developed into a technique that has significant advantages over existing methods for counting and measuring the size of microscopic objects,’ said Dr. Glenn Walker, senior author of a paper on the work and an associate professor in the joint biomedical engineering program at NC State and UNC-Chapel Hill.
Particle counters are used in a wide variety of industries; physicians use them to count and identify blood and cancer cells while ink manufacturers use them to ensure consistent toner quality. According to NCSU, the new thermal technique could also lead to new applications.
The researchers built a device in which an extremely narrow plastic tube rests on a silicon substrate. A wire is connected to a single point beneath the tube and an extremely small current is run through the wire, both generating heat that radiates into the tube and measuring the temperature of the tube and its contents.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...