Wriggling toward greater understanding

Researchers have discovered how to measure the absorption of multi-walled carbon nanoparticles into worms and cancer cells, a breakthrough that will further scientists’ understanding of how the particles impact the environment.

researchers have discovered how to measure the absorption of multi-walled carbon nanoparticles into worms and cancer cells, a breakthrough that will increase scientists' understanding of how the particles impact the living environment.

A team led by U-M chemical engineering professor Walter J. Weber Jr. tagged multi-walled carbon nanotubes—one of the most promising nanomaterials developed to date—with the carbon-14 radioactive isotope, which enabled the nanotubes to be tracked and quantified as they were absorbed into living cells. Researchers used cancer cells called HeLa cells, and also measured nanotube uptake in an earthworm and an aquatic type of worm.

The findings were presented on Sunday 26 March at the 231st American Chemical Society National Meeting in Atlanta.

Carbon nanotubes were discovered in 1991, and hold great promise in several areas, including pharmacology and for hydrogen storage in fuel cells, Weber said. But despite their promise, a big problem is that it's not known how multi-walled carbon nanotubes will impact the living environment, Weber said.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox