Sound tunnels into rewritable lab-on-a-chip devices
Engineers have used sound waves to create tunnels in oil to manipulate and transport droplets, a microfluidic lab-on-a-chip advance that could improve on-site diagnostics or laboratory research.
The technology from a team at Duke University, North Carolina, could form the basis of a small-scale, programmable, rewritable biomedical chip that is completely reusable. The team’s results appear online on June 10 in Science Advances.
Sound waves separate circulating tumour cells for accurate liquid biopsies
Reusable lab-on-a-chip uses acoustic waves to manipulate fluid droplets
"Our new system achieves rewritable routing, sorting and gating of droplets with minimal external control, which are essential functions for the digital logic control of droplets," said Tony Jun Huang, the William Bevan Distinguished Professor of Mechanical Engineering and Materials Science at Duke. "And we achieve it with less energy and a simpler setup that can control more droplets simultaneously than previous systems."
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...