OSNT actuator flexes muscle for future research
Researchers have developed an electrochemical actuator that uses specialised organic semiconductor nanotubes (OSNTs), an advance with potential applications in soft robotics and artificial muscles.
Currently in the early stages of development at the University of Houston, Texas the actuator is expected to become a key part of research contributing to the future of robotic, bioelectronic and biomedical science.
“Electrochemical devices that transform electrical energy to mechanical energy have potential use in numerous applications, ranging from soft robotics and micropumps to autofocus microlenses and bioelectronics,” said Mohammad Reza Abidian, associate professor of biomedical engineering in the UH Cullen College of Engineering. He’s the corresponding author of the article Organic Semiconductor Nanotubes for Electrochemical Devices, published in Advanced Functional Materials, which details the discovery.
According to UH, significant movement and fast response time have been elusive goals, particularly for electrochemical actuators that operate in liquid. This is because the drag force of a liquid restricts an actuator’s motion and limits the ion transportation and accumulation in electrode materials and structures. In Abidian’s lab, he and his team refined methods of working around those two obstacles.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Fusion inches closer as ITER completes magnet system
The problem with a Tokamak shape for the fusion plasma, is that the magnetic field from the central solenoid reduces from the centre outwards, leading...