Researchers see energy boost in atomically confined water
A material incorporating atomically thin layers of water is able to store and deliver energy more quickly than the same material without the water layers.
This is the conclusion of research carried out at North Carolina State University (NC State), which is said to raise questions about the behaviour of liquids confined at this scale, and could inform future energy-storage technologies.
"This is a proof of concept, but the idea of using water or other solvents to 'tune' the transport of ions in a layered material is very exciting," said Veronica Augustyn, an assistant professor of materials science and engineering at NC State and corresponding author of a paper describing the work in Chemistry of Materials. "The fundamental idea is that this could allow an increased amount of energy to be stored per unit of volume, faster diffusion of ions through the material, and faster charge transfer.
"Again, this is only a first step, but this line of investigation could ultimately lead to things like thinner batteries, faster storage for renewable-based power grids, or faster acceleration in electric vehicles," Augustyn said.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Water Sector Talent Exodus Could Cripple The Sector
Maybe if things are essential for the running of a country and we want to pay a fair price we should be running these utilities on a not for profit...