Composite materials printed with ultrasonic additive manufacturing system

Engineers at Bristol University have developed an ultrasonic additive manufacturing system that prints composite materials in 3D.

According to the university, the technology will soon enable a much greater range of items to be 3D printed at home on a small budget.

The study published in Smart Materials and Structures creates and demonstrates a novel method in which ultrasonic waves are used to position reinforcement fibres as part of the 3D printing process. The fibres are formed into a microscopic reinforcement framework that gives the material strength. This microstructure is then set in place using a focused laser beam, which locally cures the epoxy resin and then prints the object.

To achieve this the research team mounted a switchable, focused laser module on the carriage of a standard three-axis 3D printing stage, above the new ultrasonic alignment apparatus.

Tom Llewellyn-Jones, a PhD student in advanced composites who developed the system, said: "We have demonstrated that our ultrasonic system can be added cheaply to an off-the-shelf 3D printer, which then turns it into a composite printer."

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox