3D mapping technique has functions in forensics and precision machining
Researchers at the US National Institute of Standards and Technology have demonstrated a laser-based imaging system that creates high-definition 3D maps of surfaces from as far away as 10.5m.

According to NIST, the method may be useful in diverse fields including precision machining and assembly, plus forensics.
NIST’s 3D mapping system is said to combine a form of laser detection and ranging (LADAR), which is sensitive enough to detect weak reflected light, with the ranging accuracy made possible by frequency combs. The frequency comb, a tool for precisely measuring different frequencies of light, is used to continuously calibrate the laser in the imaging system.
Operating with laser power of nine milliwatts, NIST’s 3D mapping system scans a target object point by point across a grid, measuring the distance to each point. The system uses the distance data to make a 3D image of about one million pixels in under 8.5 minutes at the current scanning rate. Distances to points on a rough surface that reflects light in many directions can be determined to within 10 micrometres in half a millisecond, with an accuracy that is traceable to a frequency standard.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...