3D printed fingertip offers skin-like tactility

Bristol Robotics Laboratory researchers have developed a 3D printed fingertip that creates signals similar to brain activity associated with human touch.  

Replicating fine tactile sense is one of robotics’ biggest challenges, with artificial grippers and prosthetics generally failing to replicate the delicate motor skills exhibited by people.

Led by Professor Nathan Lepora, the latest breakthrough saw the BRL team create a 3D-printed mesh of pin-like papillae on the underside of an artificial skin, mimicking the dermal papillae found between the outer epidermal and inner dermal layers of human tactile skin.

MORE FROM ROBOTICS

Fabricated using advanced 3D printers that mix soft and hard materials to create biomimetic structures, these artificial papillae produce digital signals analogous to the neural signals that humans exhibit when touching objects and establishing tactile spatial relationships.

“We found our 3D-printed tactile fingertip can produce artificial nerve signals that look like recordings from real, tactile neurons,” said Lepora, a professor from Bristol’s Department of Engineering Maths and based at BRL. “Those recordings are very complex with hills and dips over edges and ridges, and we saw the same pattern in our artificial tactile data.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox