Eel inspired artificial nerve tissue heralds soft robotics breakthrough
Researchers in the US have taken their inspiration from the sinuous swimming motion of an eel to develop soft materials with embedded chemical networks that mimic the behaviour of nerve tissue.
Working with funding from the US Army Research Office, the group, from Brandeis University in Massachusetts, claims that the breakthrough could lead to the development of autonomous soft robots with highly distributed and tightly integrated sensing, actuation, computation and control. The research is published in the UK journal Lab on a Chip
Led by Professor of Physics Dr Seth Fraden, the team drew their inspiration from the sinuous swimming motion of a swimming blue eel and studied how a type of neural network present in the eel, named the Central Pattern Generator (CPG), produces waves of chemical pulses that propagate down the eel's spine to rhythmically drive swimming muscles.
Fraden's lab set about engineering a material that could mimic this generator by first constructing a control device that produces the same neural activation patterns biologists have observed. There, they created a control system that runs on chemical power, as is done in biology, without resorting to any computer or electromechanical devices.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
UK Automotive Feeling The Pinch Of Skills Shortage
Not so much attracting skills to the UK but generating skills within the UK is what is needed! That statement suggest they are in effect wanting to...