Rodent control

A computerised implant not only translates brain signals into movement but also evolves with the brain as it learns.

Devices known as brain-machine interfaces could someday be used routinely to help paralysed patients and amputees control prosthetic limbs with just their thoughts.

University of Florida (UF) researchers have taken the concept a step further, devising a way for computerised devices not only to translate brain signals into movement but also to evolve with the brain as it learns.

Instead of simply interpreting brain signals and routing them to a robotic hand or leg, this type of brain-machine interface would adapt to a person’s behaviour over time and use the knowledge to help complete a task more efficiently, say UF College of Medicine and College of Engineering researchers who developed a model system and tested it in rats.

Until now, brain-machine interfaces have been designed as one-way conversations between the brain and a computer, with the brain doing all the talking and the computer following commands. But the system that UF engineers have created allows the computer to have a say in a conversation, too.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox