New approach to soft robotics encourages sustainability
A new study details a new approach to designing soft robotics and metamaterials by utilising computer algorithms.
Researchers from the University of Illinois Urbana-Champaign and Technical University of Denmark said they can now build multimaterial structures without dependence on human intuition or trial-and-error to produce highly efficient actuators and energy absorbers that mimic designs found in nature.
Led by Illinois civil and environmental engineering Professor Shelly Zhang, the study uses optimisation theory and an algorithm-based design process called topology optimisation. Also known as digital synthesis, the design process builds composite structures that can precisely achieve complex prescribed mechanical responses.
“The complex mechanical responses called for in soft robotics and metamaterials require the use of multiple materials — but building these types of structures can be a challenge,” Zhang said in a statement. “There are so many materials to choose from, and determining the optimal combination of materials to fit a specific function presents an overwhelming amount of data for a researcher to process.”
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
UK car production falls in April
Might the ´combination of factors´ include, in the face of stagnant EV sales, manufacturers reducing ICE car production in order to avoid the £15,000...