New tungsten alloy has potential for nuclear fusion

Produced in the form of thin films, the tungsten alloy can withstand unprecedented amounts of radiation without damage, making is suitable for the interior of fusion reactors

Developed by researchers at Los Alamos National Laboratory in New Mexico, the alloy seems to be far stronger than other materials that have been investigated for high-radiation environments. “We have never seen before a material that can withstand the level of radiation damage that we have observed for this high-entropy [four or more principal elements] alloy,” commented principal investigator Enrique Martinez Saez. Moreover, the alloy retains its mechanical properties after irradiation, while traditional counterparts degrade easily when irradiated, he added.

The material is a quaternary nanocrystalline tungsten-tantalum-vanadium-chromium alloy, and is described by Martinez Saez and collaborators at Argonne National Laboratory, the Pacific Northwest National Laboratory, Warsaw University of Technology and the UK Atomic Energy Authority in a paper in Science Advances.

Material scientist Arun Deveraj from Pacific Northwest speculates that changes undergone by the alloy might explain its radiation tolerance. “Atom probe tomography revealed an interesting atomic level layering of different elements in these alloys, which then changed to nanoclusters when subjected to radiation,” he said.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox